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Abstract The function and dynamics of many proteins

are best understood not from a single structure but from an

ensemble. A high quality ensemble is necessary for accu-

rately delineating protein dynamics. However, conforma-

tions in an ensemble are generally given equal weights.

Few attempts were made to assign relative populations to

the conformations, mainly due to the lack of right experi-

mental data. Here we propose a method for assigning rel-

ative populations to ensembles using experimental residue

dipolar couplings (RDC) as constraints, and show that

relative populations can significantly enhance an ensem-

ble’s ability in representing the native states and dynamics.

The method works by identifying conformation states

within an ensemble and assigning appropriate relative

populations to them. Each of these conformation states is

represented by a sub-ensemble consisting of a subset of the

conformations. Application to the ubiquitin X-ray ensem-

ble clearly identifies two key conformation states, with

relative populations in excellent agreement with previous

work. We then apply the method to a reprotonated ERNST

ensemble that is enhanced with a switched conformation,

and show that as a result of population reweighting, not

only the reproduction of RDCs is significantly improved,

but common conformational features (particularly the

dihedral angle distributions of /53 and w52) also emerge for

both the X-ray ensemble and the reprotonated ERNST

ensemble.

Keywords Residual dipolar couplings � Ubiquitin �
Relative populations � Boltzmann weights � Weighted

ensemble � Ensemble quality

Introduction

The functions of a protein are closely related to not only its

structure but also its dynamics. For more and more pro-

teins, it is becoming increasingly evident that their func-

tional behavior is best understood not through one single

structure but through the distribution and dynamic transi-

tion among a number of conformation states that form the

native-state ensemble (Austin et al. 1975; Boehr et al.

2009; DePristo et al. 2004; Frauenfelder et al. 2001;

Furnham et al. 2006; Karplus and McCammon 2002; Levin

et al. 2007; Phillips 2009). Such an ensemble representa-

tion is consistent with the energy landscape theory and the

‘protein folding funnels’ (Dill and Chan 1997; Frauenfelder

et al. 1991; Miyashita et al. 2003). With the rapidly

growing Protein Data Bank (PDB) (Berman et al. 2000),

protein structures are becoming increasingly more avail-

able and for some well-studied proteins, tens and even

hundreds of structures (of one same protein) have been

determined. These structures have been shown to capture a

representative subset of the native-state ensemble (Best

et al. 2006).
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On the other hand, the advancement of the experimental

techniques and the increasing availability of experimental

data has brought also a number of exciting recent works

that aim to determine protein conformation ensembles

instead of a single structure, using the experimental data as

constraints (Clore and Schwieters 2004a, b, 2006; Lange

et al. 2008; Lindorff-Larsen et al. 2005; Richter et al. 2007,

Fenwick et al. 2011). The extent to which some of these

ensembles represent the native states is debatable since the

ensemble, which in some cases contains over a hundred

conformations, may be under-constrained by the experi-

mental data. As a matter of fact, since the experimental

observations and data are macroscopic in nature and rep-

resent the ensemble and time averages of microscopic

conformations, it may not be possible to verify the validity

of each conformation individually in such ensembles.

Indeed, the concern of most of these ensembles was mostly

about representing the dynamics correctly, less about the

validity of each individual conformation.

For all of the above ensemble determination protocols,

the conformations within the ensemble were given equal

weights, i.e., 1/Ne, where Ne is the size of the ensemble.

While weights were listed out as part of the parameters in

some of these methods, weights other than equal weights

were not studied. Physically these weights represent rela-

tive populations of the conformations and thus their rela-

tive contributions to the ensemble.

There are a couple of reasons why few work has been

carried out to exploit the potential benefit of including

these weights (or relative populations). First, an elegant

seminal work by Brunger’s group had shown earlier that

regular NOE data alone was insufficient to determine the

relative populations of a two-conformer ensemble (Bonvin

and Brunger 1996). Thus it was not clear if there were

enough experimental data to determine the populations

meaningfully, even though the authors (Bonvin and Brun-

ger 1996) were hopeful that relative populations could

possibly be determined when other sources of experimental

data were provided. Secondly, equal-weight conformations

themselves can capture the relative population information

to some extent, by including in the ensemble multiple

copies of one similar conformation. The number of copies

thus indirectly encodes the weight. However, it is an

insufficient way to represent the populations, as it requires

more conformations to be in the ensemble and thus may

worsen the potential problem of over-fitting mentioned

above.

Our hypothesis

In this work we propose that it is feasible to assign relative

populations to ensembles by using experimental RDC data

as constraints, and that adding relative populations should

enhance an ensemble’s ability in representing a protein’s

native states and its dynamics.

Assigning relative populations to an ensemble:

background and problem definition

For many a protein, the conformation space near its native

states can be best represented by a number of inter-con-

nected conformation states, each of which may have a

different population, as illustrated in Fig. 1. When an

ensemble of conformations are used to represent the con-

formation space (shown as the cross marks in Fig. 1), its

quality in representing the conformation space is deter-

mined by three factors:

1. COMPLETENESS: Are all conformation states

reached by at least one conformation?

2. COVERAGE: For each of the conformation states that

are reached by some conformation(s), what is quality

of the coverage? In other words, how well do the finite

number of conformations that are in a given confor-

mational state together represent that conformation

state?

3. CONTRIBUTION: Is the number of conformations at

each conformation state proportional to the ideal

Boltzmann weight?

Ideally, we would like to have an ensemble that has an

infinite number of conformations that cover all the con-

formation states according to the Boltzmann distribution.

Such an ensemble would have perfect completeness, cov-

erage and contribution. In reality, our ensembles are of

Fig. 1 Pictorial representation of Boltzmann weights versus sam-

pling weights. The ‘x’ marks represent conformations on a hypothet-

ical energy landscape. The white bars represent sampling weights

while the shaded bars represent the Boltzmann weights
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finite sizes, having tens or possibly hundreds of confor-

mations, which are relatively small comparing to the large

conformation space. Therefore, we do not have perfect

completeness, coverage or contribution.

Another key point to realize is that the matter of com-

pleteness and coverage are sampling issues. The confor-

mations in an ensemble could have come from

experiments, by structure determination methods such as

X-ray crystallography, NMR, etc., or they could have been

determined computationally. Whatever the source is,

completeness and coverage are sampling issues. They

reflect the sampling quality of a given ensemble.

However, how well an ensemble represents the confor-

mation space near the native state and how well it can

reproduce experimental data/observations are determined not

solely by the ensemble’s completeness or coverage. It

depends also on the third factor—contribution. Without doubt

an ensemble whose conformations are assigned a population

(contribution) proportional to their actual Boltzmann weights

would represent the conformation space the best, reaching the

limit of that ensemble’s ability in representing the confor-

mation space. Therefore, an ensemble with a proper assign-

ment of relative contributions given to its conformation states

should do better than an ensemble without. As illustrated in

Fig. 1, the conformation space of a protein is represented by

three conformations, which by default are given an equal

weight of 1/3. However, the ensemble can be enhanced if the

actual Boltzmann weights (represented by dark shaded

blocks) can be determined somehow and assigned to the three

conformations. Now, the immediate questions are: are rela-

tive contributions even determinable? And if so, how? And

what is required to determine them?

In this work, our focus is on this third aspect—contri-

bution. Our hypothesis is that given an ensemble of rea-

sonable quality in completeness and coverage, the relative

contributions can be determined by using experimental

RDC data as constraints.

We will apply a least-square fitting algorithm to deter-

mine the weights. To prevent over-fitting, careful cross-

validation is applied. In the following ‘‘Materials and

methods’’ section, we present our approach in details.

Materials and methods

Recall that the problem we want to address here is that, given a

conformation ensemble and a sufficient amount of experi-

mental RDC data, is it possible to assign meaningful popu-

lations to the conformations in the ensemble without incurring

over-fitting? To what extent can we assign the populations?

There are two extremes. One extreme is to assign each con-

formation with a population, which is physically unrealistic

and generally cannot be achieved. The other is to assign the

whole ensemble as a group with a (percentage) population of

1. This is equivalent to equal weights that have been used. Our

hypothesis is that sufficient experimental data should allow

weight assignment to clusters of conformations, or sub-

ensembles, within the ensemble.

In this section, we present our method for assigning

relative populations to clusters of conformations within an

ensemble. The potential problem of over-fitting that often

arises in such a process is carefully addressed. The sig-

nificance of the assigned relative populations is further

examined by cross-validation.

There are four major steps in our method, which are

described in order in the following sections. Briefly, the

first step, a pre-processing step, merges conformations in

the ensemble into small conformation clusters. For

ensembles whose sizes are small, this step is skipped. The

second step takes the pre-processed ensemble and applies a

least squares fitting algorithm to identify a subset of con-

formations/clusters that best represent the conformation

states. Step three takes this subset as a whole and itera-

tively split it into smaller sets until right before over-fitting

starts to occur. Step four attempts to add back to the

ensemble some conformations excluded in earlier steps.

Lastly, the significance of the relative populations thus

assigned is evaluated by cross-validation.

Step I: Pre-processing to reduce the dimensionality

of the ensemble

In cases where the ensemble size is large and it has more

conformations than the number of experimental RDC data

points, clustering (Daura et al. 1999; Shao et al. 2007) is

carried out to reduce the dimensionality of the ensemble.

Here the dimensionality of an ensemble refers to the

structural variety of the ensemble and is set to be the

number of clusters in the ensemble. Initially each confor-

mation in the ensemble forms its own cluster. Clustering

structurally similar conformations into small clusters thus

helps reduce the dimensionality and makes the ensemble

manageable for the least square fitting procedure to be

applied in the next step.

The distance between a pair of clusters is defined as the

average of all the pairwise distances between the confor-

mations in the two clusters. The distance between two

conformations is defined by Qscore.

Qscore ¼

P
fi!¼jg exp � rA

fi;jg�rB
fi;jg

� �2
� �� �

NðN � 1Þ ð1Þ

where ri.j is the distance between atoms i and j in a con-

formation and N is the total number of atoms. Qscore value

ranges from 0 to 1, 0 being the very dissimilar and 1 being

perfectly similar (Eastwood et al. 2001).
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Initially each conformation in the ensemble forms its

own cluster. The following three steps are iterated. As a

result, similar conformations will be bundled together into

larger clusters, while the rest remain as singlet clusters.

1. Identify the closest pair of conformations in the

ensemble. Merge them into a cluster if their distance

is less than a threshold, Dmax. Otherwise stop the

procedure.

2. Grow the cluster formed in step 1 by repeatedly adding

to it the next conformation whose average distance to

the conformations in the cluster is the smallest and is

less than Dmax, otherwise stop adding.

3. Remove the cluster and go back to step 1.

Step II: Identify representative conformations by least-

square fitting to RDCs

Residual dipolar coupling comes from the interaction of

two nuclear spins (dipole–dipole) in the presence of the

external magnetic field and is defined as (Kontaxis and Bax

2001; Prestegard 1998; Tolman et al. 1995):

Dfijg ¼ �
lhrirj

ð2prÞ3
3 cos2 h� 1

2

� �

ð2Þ

where ri and rj are the nuclear magnetogyric ratios of

nuclei i and j respectively, h is Plank’s constant, l is per-

mittivity of space, r is the internuclear distance between the

two nuclei and H is the angle between the internuclear

vector and the external magnetic field. The brackets rep-

resent the ensemble and time average. Normally, the

residual dipolar coupling reduces to zero because of iso-

tropic tumbling. The anisotropic measurement can be

obtained by the aid of various types of liquid crystalline

media.

For a protein with a number of distinct conformation

states, the observed RDC data are best reproduced when

the conformations close to these conformation states are

present in the ensemble and given proper weighting. The

conformations in a given ensemble may not all fall close to

a conformation state. Here we use least square fitting to

identify which conformations are needed and what relative

populations should be given to them in order to best

reproduce the experimental RDC data. By doing this, we

can pick out key representative conformations from the

ensemble. The relative populations assigned to them,

however, are subject to the problem of over-fitting, due to

the intrinsic nature of least square fitting. However, mea-

sures will be taken to identify the onset of over-fitting and

prevent it from affecting weight assignment, as addressed

in step III.

Appendix 1 describes how RDCs can be back calculated

from a single conformation or an ensemble of conforma-

tions. In this process of back calculating, singular value

decomposition is commonly used to obtain the least square

solution for the alignment tensor. Here we apply the same

technique iteratively to obtain the least square solution for

the relative populations as well. First, equal weights (1/n)

are given to all clusters (which are determined at step I)

and Eq. 13 (see Appendix 1) is used to obtain the optimal

Saupe matrix, S. After S is obtained, it is used to determine

w0ks by least squares fitting. The process is iterated until the

weights have converged. In the end, each cluster has either

positive or zero population, since the weights are derived

under the nonnegative constraints (Lawson and Hanson

1995). In the case where there are multiple RDC data sets,

different alignment tensors are needed for different media.

The optimal weight combination (the relative populations)

is obtained by least squares fitting to all the RDC data sets.

A detailed description of these iterative least squares fitting

algorithms is given in Appendix 2.

The iterative least squares fitting of the conformations in

the ensemble to multiple RDC datasets returns a list of

clusters/conformations that have non-zero populations. The

conformations in these clusters are recognized as repre-

sentative conformations.

In cases where there are more conformational clusters

than the experimental data points, representative clusters

are identified through the following procedure.

1. From the pool of all available conformational clusters,

randomly select N clusters, where N is the number of

experimental data points.

2. Run the least squares fitting algorithm (Appendix 2) to

determine cluster weights. Some clusters may have

zero weights.

3. Repeat steps 1 and 2 many times and record the cluster

weights at each iteration.

4. The top N clusters with the highest average frequen-

cies of having non-zero weights are identified as

representative clusters.

The representative clusters form the leaf nodes of a

hierarchal clustering tree, built bottom up by merging the

closest pair of clusters at each iteration.

Step III: Splitting and the identification of over-fitting

To avoid the potential problem of over-fitting that may take

place in the process of assigning relative populations, we

take steps to recognize the onset of over-fitting and prevent

it from affecting the weight assignment. Recall that there

are two extremes in assigning weights. One is to assign

each conformation with a population. The other is to assign
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the whole ensemble as a group with a population of 1,

which is equivalent to having equal weights. In our studies

we have found that one may confidently move beyond

equal weighting and assign relative (different) populations

to sub-ensembles but not to the point that each conforma-

tion in the ensemble is given a weight. There exists a limit

where one cannot further divide the sub-ensembles into

smaller pieces. This limit represents the extent to which

relative populations can be assigned and it depends on the

quality of the ensemble and the quality and quantity of the

experimental data. In reality, the limit is determined

through monitoring the onset of over-fitting.

In the following procedure, we iteratively split the

ensemble, which is now made up of the representative

conformations, into smaller and smaller clusters. The split-

ting process is the same as the inverse process of hierar-

chical clustering. At each iteration, only one cluster is spit

into two, which corresponds to the merging of the closest

pair of clusters in hierarchical clustering. Therefore there are

k clusters at the kth iteration. By applying the least squares

fitting algorithms as described in Appendix 2, we can assign

relative populations (or weights) to these k clusters.

If we have N sets of experimental RDC data that are

consistent with one other and contain random measurement

noise within them, N sets of weights will be assigned to the

k clusters. Now if the weight assignment is correct, we

expect that these N sets of weights should strongly corre-

late with one another. The onset of overfitting is when such

correlations start to greatly degrade. That is, it begins to fit

to the noise. Since noise is random and uncorrelated in the

different experimental data, the weights fitting to noise

should also be uncorrelated. This recognition of the onset

of over-fitting is even more sensitive when the correlations

are computed using only the weights of the two newly

birthed clusters at the kth iteration. The idea is that, if the

two newly birthed clusters belong to one conformation

state and should not have been split, we expect the weights

assigned to them by different sets of experimental data

should be ambiguous and lack consistency and thus low

correlations. On the other hand, if these two clusters belong

to difference conformation states and should be split, we

expect to see consistent weight assignments from different

experimental datasets and thus high correlations.

Replicate experimental data for over-fitting identification

To identify over-fitting as outlined above, all the experi-

mental data is duplicated to create N identical copies and

then different random Gaussian noise are added to each of

them. These N datasets are thus identical except for the

noise in them.

A relatively large N is needed to have a high sensitivity

to the onset of over-fitting. N is set to be 20 in this work.

The standard deviation (SD) of the random Gaussian noise

added to each replica is set to be 80 % of the modeled

experimental noise, which are bond-dependent and are set

to be 0.26, 0.1, 0.5, 0.1 and 0.1 Hz for NH, CaC, CaHa, CN

and CHN datasets respectively as was done in (Clore and

Schwieters 2004a).

We use Q-factor to measure how well the weight

assignments are correlated with one another. The definition

of Q-factor is given in Eq. 3, where it is employed also to

measure the similarity between experimental and computed

RDC data. The maximum of the Q-factors between any two

of the N weight assignments is denoted as MaxQ. A large

MaxQ (above a certain threshold) indicates inconsistent

weight assignments and thus over-fitting for the two newly

birthed clusters. A threshold value of 0.06 is used for

MaxQ throughout all the cases investigated below. In

summary, the procedure is:

1. Initially all the representative conformations belong to

one single cluster.

2. Experimental data is replicated into N sets. N = 20.

3. Iteratively split the clusters (the exact inverse process

of a hierarchical clustering).

4. Assign sets of weights to clusters based on fitting to the

experimental datasets.

5. Check if the weights assigned to the newly birthed

clusters are significant (i.e., weight C0.01). If any

weight is found to be insignificant, repeat the process

by removing the insignificant cluster.

6. Compute the weight correlations and MaxQ for the

two newly birthed clusters.

7. If the minimum of the weight correlations is negative

and MaxQ is greater than a predefined threshold, it

signifies that over-fitting has occurred. In this case, the

two newly birthed clusters are merged back together

and the cluster is marked ‘‘final’’, indicating that it can

no longer be split. Otherwise, continue and move on to

the next iteration. Stop the procedure when there is no

cluster left that can be split.

Step IV: Adding back other conformations

By the end of step III, we have partitioned the ensemble

into a number of ‘‘final’’ clusters, with N sets of weights

assigned to each of them. Now compute the mean weight

value and the SD for each cluster. The clusters whose mean

weight value is less than its SD are then removed, as they

do not consistently have a positive weight.

Each of the remaining clusters is considered as repre-

senting an independent conformation state. Since it remains

possible that the conformations that were excluded earlier

at steps I to III may belong to one of the conformational

states that these clusters are representing, adding some of

J Biomol NMR (2014) 58:209–225 213

123



them back to the clusters thus may possibly improve the

quality of the ensemble. The sequence in which confor-

mations are added back is arranged, in increasing order, by

the minimum distance between a conformation and any of

the clusters. A conformation is added to the cluster to

which it is the closest if including it decreases the overall

Q-factor.

Estimate the uncertainty in weight assignments

After the conformation states (i.e., the clusters) have been

identified and weights assigned to them, it is possible to

estimate the uncertainty in the weight assignments, pro-

vided that there exist multiple sets of experimental data.

This is because least squares fitting can be applied to fit

each set of experimental data independently. If there are

M sets of experimental data, this will result in M sets of

weight assignments, or M weight assignments to each

cluster. It is expected that the weight assignments for each

cluster are in general not identical, since there is noise in

the experimental data and the cluster representation for

each conformation state is not perfect. The levels of

uncertainty in the weight assignments can be estimated by

computing the SD within the weight assignments for each

cluster.

Cross-validation

Q-factor is a commonly used measure of the agreement

between the experimental and calculated RDCs and is

defined as:

Q� factor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDcalc � DexpÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDexpÞ2

q ð3Þ

where Dcalc is the calculated RDC and Dexp is the experi-

mental RDC.

The introduction and assignment of relative populations

to an ensemble improves the Q-factors. To assess the sig-

nificance of such improvement, we leave out CaHa RDC

from the experimental data when determining the weights.

The CaHa dataset was then used for cross-validation.

Lange et al. (2008) used CN vector for cross-validation.

Given that the data used in refinement includes CaC, CHN,

NH vector orientations, CN RDC might not be the best

choice. CaHa vector, on the other hand, is not in the pep-

tide plane and is thus independent of other bond vector

orientations, making it a better cross-validation dataset.

Cross-validation provides a way to check whether the

better fitting gained by assigning relative populations is a

fitting to the noise in experimental data or is a fitting to the

true data. If the ensemble with relative population

assignment does render a better representation of the con-

formation space, we expect that the fitting to the leaving-

out CaHa data should also improve.

All the conformations are stripped off its hydrogen

atoms first and then re-protonated using Reduce (Word

et al. 1999) before computing Saupe matrices and back-

calculating RDC values.

Ubiquitin ensembles and experimental RDC data sets

Ubiquitin has long been used as a model protein to probe

protein dynamics and for which abundant experimental

RDC datasets are available. A total of 62 RDC data sets,

including NH, CN, CHN, CaC, CaHa and side chain

methyl, were used to determine EROS ensemble (Lange

et al. 2008). Since our procedure requires that the relative

populations be determined by fitting to experimental RDC

data, it is critical that the data has no significant errors. For

this reason we have pruned the above dataset to remove

any dataset whose data points are less than 40 and whose

Q-factors are significantly higher when back-calculated

using structure 1UBQ or 1D3Z (NMR ensemble).

Table 1 lists the experimental datasets used in this work,

using the code names given in Lakomek et al. (2008).

There exist a few other multi-vector datasets for ubiquitin

(Lakomek et al. 2006). However, they are not included

here since they display relatively large Q-factor when

applied to the NMR structure 1D3Z. For the same reason,

NH datasets labeled A3, A5, A30, A31, A32, A33, and A34

(as in Lakomek et al. 2008) are not included either.

Results

In this section, we apply our method to assign relative

populations to conformation ensembles of proteins. It is

assumed here that the protein that an ensemble represents

should have a small number of conformation states, and

that some of the conformations in the ensemble, though

sparse relative to the large conformation space, fall close to

the protein’s conformation states. These conformations

may come from experimentally determined structures of

Table 1 RDC datasets used for weighting ubiquitin ensembles,

coded according to Lakomek et al. (2008)

Experimental data

type

RDC data

NH A1, A2, A4, A6, A7, A8, A9, A10, A11, A12,

A13, A16, A21, A22, A23, A24, A25, A26,

A27, A28, A29, A34, A36

NH, CN, CHN, CaC

and CaHa

(Ottiger and Bax 1998)(2 sets)
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the protein. Because of their scarcity, there is no expecta-

tion on these conformations that their distribution on the

conformation space should be Boltzmann distribution. For

such an ensemble, and using experimental RDC data as

constraints, we will show to what extent one can mean-

ingfully assign relative populations, or weights, to the

ensemble. We aim to answer also, in order to assign

meaningful relative populations, what is the minimum

requirement on the ensemble. In the end, we apply the

method to an ensemble of crystal structures of ubiquitin.

Creating an artificial conformation ensemble

and artificial RDC data

To test our method, we first create an artificial energy

landscape and a native state ensemble that will be used as a

reference (Richter et al. 2007). We create also artificial

RDC data based on the ensemble composition. The

advantage of using artificial ensembles and RDCs is that

we have perfect control of their composition and their noise

level.

Creating an artificial native state ensemble

To create an artificial native state ensemble, five distinct

conformations of protein ubiquitin are picked from an

accelerated MD simulation (Hamelberg et al. 2004). The

conformations are chosen such that the minimum RMSD

between any two conformations is greater than 2.5 Å. We

assume that these five conformations represent the centers

of all the (five) possible conformational states of the pro-

tein. We then sample more conformations around these

centers and use them, together with the centers, to represent

the conformation states. This is done using CONCOORD

(de Groot et al. 1997). CONCOORD, by default, can pro-

duce quite broad distributions of conformations. To ensure

that each conformational state is tightly clustered, a

damping coefficient of 0.3 is applied when generating the

distance restraints from these five conformations. As a

result, the average RMSD within any sub-ensemble is close

to 1 Å. Thus, the conformations fall into five clearly sep-

arated clusters.

Next, we set the Boltzmann weight of each conforma-

tion state to be proportional to the number of conforma-

tions in its energy well (i.e., the sub-ensemble around each

conformation state). The number of conformations sampled

in each sub-ensemble and the associated Boltzmann

weights are given in Table 2.

Noise conformations

Noise conformations are those that do not contribute to

experimental observations. Strictly speaking though, every

conformation in the ensemble contributes to the observa-

tions to some extent. But those conformations that are

away from any of the protein’s conformation states have so

low a weight that they virtually do not contribute. We

consider such conformations as noise conformations as

contrast to those that do represent the protein’s confor-

mation states.

To create noise conformations, we use CONCOORD to

sample around each conformational state without any

damping. The average RMSD in this sampling is around

2.5 Å. To guarantee these conformations do represent

noise, we remove from them any conformations that can

give nearly the same RDC Q-factors as the conformations

representing the conformation states.

Generating artificial RDC data

Using all the conformations (1,850 total, see Table 2) of

the ensemble, artificial RDC datasets matching the com-

position of the real experimental RDC data of ubiquitin, are

generated. The average A matrix of the ensemble is first

calculated. Then for each of the experimental datasets lis-

ted in Table 1 the best-fit Saupe matrix is determined using

1D3Z NMR ensemble. An artificial RDC dataset is then

created by multiplying the average A matrix with the Saupe

matrix. At this point, these RDC datasets are noise-free.

We will call them noise-free RDCs.

In reality, experimental data contains noise of about

0.5–1.0 Hz (Clore and Schwieters 2006), we add Guassian

noise to the artificially generated RDC data that are originally

noise-free. The SDs of the noise are 0.26, 0.1, 0.5, 0.1 and

0.1 Hz for NH, CaC, CaHa, CN and CHN datasets respec-

tively as was done in Clore and Schwieters (2004a). Note that

because of the way in which the artificial RDC data are gen-

erated, the given conformation ensemble can perfectly

reproduce these RDC data prior to the adding of the noise, but

not so after. In the rest of this article, unless explicitly noted,

artificial RDCs refer to the ones that contain noise.

What is required of the ensemble?

In the section we aim to determine what is the requirement

of the ensemble in order to have a meaningful weight

assignment. We design four test cases to examine the

applicability of the method. The purpose of these four

cases is to show that neither under-sampling at each con-

formation state nor noise conformations hinder weight

assignments.

Case I

In this case we assume there is no noise conformations and

the ensemble contains only conformations from the five
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conformation states. However, the number of conforma-

tions at each state is not proportional to its Boltzmann

weight. 21, 60, 6, 7, 290 conformations are randomly

selected from conformation state one, two, three, four, and

five respectively and mixed together to form an ensemble.

Our method is then applied to assign relative populations to

this ensemble. Table 3 lists the clusters obtained in the end,

along with the composition of the clusters, weights

assigned and expected weights of all the clusters.

It is seen from Table 3 that the final weight obtained for

each conformation cluster is highly similar to the expected

Boltzmann weight and each cluster contains purely con-

formations that belong to that conformation state. Similar

results are obtained when the same experiment is repeated

with different replica noise.

Case II

In this case, one of the conformation states (the third) was

intentionally not included in the process of generating

artificial experimental data. This is done to mimic the

scenario where an ensemble contains a cluster of confor-

mations from a state that does not belong to the native

ensemble. While the purpose for the first case is to test if

the method is able to assign right populations to the con-

formations contributing to the experimental observations,

the purpose for this one is to test whether or not the method

is able to assign no weight to conformations that do not

contribute.

The new relative Boltzmann weights are given in

Table 4. The same conformation ensemble employed in

case I, which includes conformations that do not contribute

to the artificial RDC calculations, is used here. After

applying our method, the resulting clusters, along with

their compositions, assigned weights and the SDs, and

expected weights are given in Table 5. From the results it

is seen that, as with case I, the weights obtained are highly

similar to the expected values. Moreover, each cluster

consists purely of conformations belonging to that cluster.

Case III

In the first two cases, the conformations in the ensemble

are clearly separated into five distinct clusters. In reality,

such distinction is often smeared by the presence of other

conformations. These other conformations virtually do not

contribute to the experimental observations (the ‘‘noise’’

conformations). However, their presence makes it difficult

to identify conformation states, or separate conformations

representing a conformation state from those that do not.

To mimic this reality, we introduce noise conformations

into the ensemble.

The same conformations as used in case I are used here

(see Table 2). In addition, an equal number of noise con-

formations (see above on how they are generated) are

added to each cluster so that they represent half of the total

conformations in each cluster. As a result, the number of

conformations in the ensemble is doubled and becomes

768, of which 384 are noise conformations. Clustering, as

Table 2 Boltzmann weights of the five conformational states in the artificial ensemble

Conformational state One Two Three Four Five Total

# of Conformations 100 200 350 500 700 1,850

Boltzmann weight 0.054 0.108 0.189 0.27 0.378 1

Table 3 Final weights and cluster compositions for case I

Cluster Final

weight ± SD

Composition Belongs

to

Expected

weight

Cluster 1 0.072 ± 0.001 20,0,0,0,0 First state 0.054

Cluster 2 0.097 ± 0.0004 0,8,0,0,0 Second state 0.108

Cluster 3 0.183 ± 0.002 0,0,5,0,0 Third state 0.189

Cluster 4 0.27 ± 0.002 0,0,0,7,0 Fourth state 0.27

Cluster 5 0.376 ± 0.001 0,0,0,0,284 Fifth state 0.378

The convention used for the composition of a cluster is to enumerate

in order the number of conformations belonging to each of the five

conformational states

Table 4 New relative Boltzmann weights after the third cluster is

excluded from artificial RDC data generation

Conformational state One Two Four Five Total

# of Conformations 100 200 500 700 1,500

Boltzmann weight 0.066 0.133 0.333 0.467 1

Table 5 Final weights and cluster compositions for case II

Cluster Final

weight ± SD

Composition Belongs

to

Expected

weight

Cluster 1 0.087 ± 0.0001 9,0,0,0,0 First state 0.066

Cluster 2 0.118 ± 0.004 0,60,0,0 Second state 0.133

Cluster 3 0.322 ± 0.003 0,0,0,7,0 Fourth state 0.333

Cluster 4 0.471 ± 0.001 0,0,0,0,280 Fifth state 0.467

The convention used for the composition of a cluster is the same as

Table 3
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described in step I in the ‘‘Materials and methods’’ section,

results in 406 clusters, of which some are singlet clusters.

Since the number of clusters is more than the number of

unique experimental data points (around 200), ‘‘represen-

tatives’’ conformations are identified by following step II

(see ‘‘Materials and methods’’).

Table 6 lists the results. There are five clusters, which

are composed of 8, 8, 5, 7, and 281 conformations from the

five conformational states respectively. All of the 384 noise

conformations are successfully filtered out. From Table 6 it

is seen that weight assignments for the clusters are highly

similar to the expected values.

Case IV

In all of the above cases, we have simulated full coverage

of the conformational states by having each of the states

represented by at least a few conformations. To assess the

impact on the reproduction of the experimental data when

one of the conformational states is missing all together, we

apply our weighting algorithm again to the ensemble used

in case III but this time each of the five clusters used to

represent the five conformational states, in turn, is pur-

posely left out. We want to see if the algorithm will pro-

duce RDC Q-factors with equal quality, while having

substantially different conformational properties than the

initial ensemble, by somehow rearranging the weights for

the remaining clusters. Table 7 lists the results.

From Table 7, it is seen that the algorithm produces

RDC Q-factors with nearly the same quality especially

when the missing cluster has a low population, such as

cluster one or two. Even with cluster three or four, its

missing causes only a small deterioration in Q-factors. In

all these cases, most of the contributions of the missing

cluster are compensated by the weight adjustment of the

remaining clusters or by assigning weight to a new clus-

ter(s) that is formed by some noise conformations. How-

ever, when the missing cluster has an especially large

population such as that of cluster five, the algorithm cannot

recover the RDC Q-factors with nearly the same quality.

The results of this test case thus clearly demonstrate the

importance of having a full coverage of all the conforma-

tional states and that low Q-factors alone are not sufficient

to provide full confidence in the completeness or correct-

ness of an ensemble.

X-ray ensemble and experimental data

X-ray structures of the same protein but solved under dif-

ferent conditions are hypothesized to form a native state

ensemble of that protein (Best et al. 2006). 68 X-ray

structures of ubiquitin with 100 % sequence identity are

taken from PDB. After considering the fact that multiple

chains exist in some of the structures, a total of 143 dif-

ferent conformations are identified and used to form the

ubiquitin conformation ensemble. Table 8 lists all the

PDB-ids along with their chain identifiers. To partition this

ensemble into proper sub-ensembles and determine their

relative populations, we follow the procedure described in

the ‘‘Materials and methods’’ section and find that 18 out of

143 crystal structures have a significant weight and are

chosen as representative conformations. This new ensem-

ble of 18 crystal structures was then subjected to the

splitting procedure and as a result, two more structures are

Table 6 Final weights and cluster compositions for case III

Cluster Final

weight ± SD

Composition Belongs

to

Expected

weight

Cluster 1 0.069 ± 0.005 8,0,0,0,0 First state 0.054

Cluster 2 0.099 ± 0.001 0,8,0,0,0 Second state 0.108

Cluster 3 0.181 ± 0.003 0,0,5,0,0 Third state 0.189

Cluster 4 0.273 ± 0.005 0,0,0,7,0 Fourth state 0.27

Cluster 5 0.377 ± 0.002 0,0,0,0,281 Fifth state 0.378

The convention used for the composition of a cluster is the same as

Table 3

Table 7 New weight assignments and Q-factors when each of the five clusters, in turn, is purposely left out of the ensemble, as in case IV

Weights NH CaC CaHa CHN CN

W1 W2 W3 W4 W5

With none missing 0.07 0.10 0.18 0.27 0.38 0.036 0.051 0.034 0.067 0.04

With state one missing – 0.11 0.20 0.31 0.37 0.042 0.059 0.041 0.072 0.054

With state two missing 0.10 – 0.26 0.26 0.36 0.047 0.056 0.054 0.074 0.052

With state three missing 0.06 0.19 – 0.31 0.35 0.066 0.067 0.079 0.082 0.08

With state four missing 0.23 0.0 0.26 – 0.27 0.08 0.074 0.084 0.102 0.091

With state five missing 0.0 0.0 0.0 0.40 – 0.202 0.15 0.17 0.166 0.155

CaHa is used for cross-validation. Note that the weights of the remaining four clusters do not add up to 1 in some cases. This happens when noise

conformations form a new cluster(s) and are assigned a non-zero weight to compensate for the missing cluster
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removed due to their near-zero weights and six clusters are

identified. The rest of the 125 structures, one by one, are

then tried to be merged into one of the six existing clusters

but none gets added.

The resulting conformation clusters along with their

weights are given in Table 9. The cluster that contains the

unbounded conformation of ubiquitin, 1UBQ, is found to

have the largest weight of *55 %, while the second

clusters, consisting exclusively of ubiquitin structures in

complex with deubiquitinating enzymes, has the second

largest relative population of *29 %.

While we were working on this manuscript, one work

was published in an early edition of PNAS (Piana et al.

2013). The work studied the native equilibrium dynamics

of ubiquitin and reported that the protein conformation was

exceptionally stable with *70 % of populated states about

0.5 Å RMSD away from the native state 1UBQ while

*20 % of the populated states showed a conformational

switch in Asp52/Gly53/Glu24 residues, referred to as

‘‘switched’’ conformer and the remaining *10 % had

partially frayed alpha helix at the C-terminus (Piana et al.

2013). Our results as shown in Table 9 agree with their

findings extremely well. In addition, another recent study

of conformational states of ubiquitin found the presence of

an alternative conformer in complex with deubiquitinating

enzymes. In the authors’ own words, ‘‘This alternative

conformer is likely to have functional significance, because

the Asp52/Gly53/Glu24 switched conformer is also found

in structures of ubiquitin, ubiquitin aldehyde, or diubiquitin

in complex with deubiquitinating enzymes (e.g., PDB

entries 2G45, 2HD5, 2IBI, 1NBF, 3I3T, 3IHP, 3NHE,

3MHS, and proximal ubiquitin of 2ZNV, which are all

discussed further below). In contrast, the un-switched

conformer is seen in essentially all other ubiquitin struc-

tures, including the previous structures for monomeric

ubiquitin, di- and tetra-ubiquitin, and complexes with other

kinds of enzymes’’ (Huang et al. 2011). Our method not

only identifies this special conformation state of ubiquitin

(the 2nd cluster in Table 9), but also assigns it an accurate

relative population. Several of the PDB entries for ubiq-

uitin in complex with deubiquitinating enzymes are

selected and grouped together by our algorithm to form

cluster 2, a cluster consisting exclusively of ubiquitin

structures in complex with deubiquitinating enzymes.

The remaining four clusters contain the following

structures. Cluster 3 consists of 2DX5 and 3KW5. 2DX5 is

a structure of ubiquitin in complex with mouse EAP45-

GLUE domain. 3KW5 contains a structure of ubiquitin in

complex with ubiquitin carboxy terminal hydrolase L1.

Cluster 4 contains 1YD8, a structure of ubiquitin in com-

plex with human GGA3 GAT domain. Cluster 5 contains

Table 8 PDB ids as well as

chain identifiers of the 143

ubiquitin X-ray conformations

used in this work to form the

ubiquitin X-ray ensemble

1AAR-A, 1AAR-B, 1CMX-B, 1F9J-A, 1F9J-B, 1NBF-C, 1NBF-D, 1OGW-A, 1P3Q-U,

1P3Q-V, 1S1Q-B, 1S1Q-D, 1TBE-A, 1TBE-B, 1UBI-A, 1UBQ-A, 1UZX-B, 1WR6-E,

1WR6-F, 1WR6-G, 1WR6-H, 1WRD-B, 1XD3-B, 1XD3-D, 1YD8-U, 1YD8-V, 2AYO-B,

2C7M-B, 2C7N-B, 2C7N-D, 2C7N-F, 2C7N-H, 2C7N-J, 2C7N-L, 2D3G-A, 2D3G-B,

2DX5-B, 2FID-A, 2FIF-A, 2FIF-C, 2FIF-E, 2G45-B, 2G45-E, 2GMI-C, 2HD5-B, 2HTH-A,

2IBI-B, 2J7Q-B, 2J7Q-D, 2JF5-A, 2JF5-B, 2O6V-A, 2O6V-C, 2O6V-E, 2O6V-G, 2OOB-B,

2QHO-A, 2QHO-C, 2QHO-E, 2QHO-G, 2WDT-B, 2WDT-D, 2WWZ-A, 2WWZ-B, 2WX0-

A, 2WX0-B, 2WX0-E, 2WX0-F, 2WX1-A, 2XEW-A, 2XEW-B, 2XEW-C, 2XEW-D, 2XEW-

E, 2XEW-F, 2XEW-G, 2XEW-H, 2XEW-I, 2XEW-J, 2XEW-K, 2XEW-L, 2XK5-A, 2ZCC-C,

2ZNV-C, 3A1Q-A, 3A1Q-D, 3A33-B, 3A9J-B, 3A9K-B, 3ALB-A, 3ALB-B, 3ALB-C, 3ALB-

D, 3BY4-B, 3C0R-B, 3C0R-D, 3EEC-A, 3EEC-B, 3EFU-A, 3EHV-B, 3EHV-C, 3H1U-A,

3H1U-B, 3H7P-B, 3H7S-A, 3H7S-B, 3HM3-A, 3HM3-B, 3HM3-C, 3HM3-D, 3I3T-B,

3I3T-D, 3I3T-F, 3I3T-H, 3IFW-B, 3IHP-C, 3IHP-D, 3JSV-B, 3JVZ-X, 3JVZ-Y, 3JW0-X,

3JW0-Y, 3K9P-B, 3KVF-B, 3KW5-B, 3LDZ-E, 3LDZ-F, 3LDZ-G, 3M3J-A, 3M3J-B, 3M3J-

C, 3M3J-D, 3M3J-E, 3M3J-F, 3MHS-D, 3NHE-B, 3NOB-B, 3NOB-C, 3NOB-D, 3NOB-E,

3NOB-F, 3NOB-G, 3NOB-H

Table 9 The six conformational clusters and their weights of the

weighted X-ray ensemble

Cluster Final weight ± SD Composition

Cluster 1 0.55 ± 0.03 1AAR-B, 1UBQ-A,

2C7M-B, 2C7N-H, 2QHO-A,

3EHV-C, 3M3J-A, 3M3J-E

Cluster 2 0.29 ± 0.03 2G45-B, 2G45-E, 2HD5-B

Cluster 3 0.064 ± 0.001 2DX5-B, 3KW5-B

Cluster 4 0.043 ± 0.002 1YD8-V

Cluster 5 0.027 ± 0.004 3HIU-A

Cluster 6 0.026 ? 0.001 1TBE-A

The conformations included in each cluster are listed by their PDB ids

as well as chain identifiers
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3H1U, a structure of ubiquitin in complex with cadmium

ion. Lastly, cluster 6 contains 1TBE, a structure of ubiq-

uitin in the form of tetraubiquitin. These four clusters all

together have a relative population of about 15 %. Figure 2

shows the final structure ensemble (center) as well as

individually, a representative conformation from each

cluster (panels a–e).

Cross validation

The individual Q-factors obtained for the different bond

vectors are shown in Table 10 for the weighted X-ray

ensemble along with other recently derived ensembles. By

partitioning the ensemble into six sub-ensembles (repre-

sented by the clusters) and assigning them relative popula-

tions, the Q-factors of all the individual bond vectors are

significantly lowered. Remarkably, the cross validation

Q-factor, that of CAHA, is also lowered from 0.161 to 0.145

for the weighted X-ray ensemble. This significant improve-

ment in Q-factors further confirms the validity of clustering

and relative population assignments discussed above.

In contrast to those of the single structure representation,

residue-wise Q-factors of unweighted and weighted

ensembles are shown in Fig. 3. It is seen that for most of

the residues, the unweighted ensemble has lower Q-factors

than the single structure, 1UBQ, while the weighted

ensemble further lowers the Q-factors.

The Q-factor results of the weighted X-ray ensemble are

on the par even with 1D3Z, NMR ensemble that was

determined using RDC as one of the restraints and are

noticeably better than MUMO (Richter et al. 2007), a

ubiquitin ensemble computationally determined using NOE

and order parameters as constraints. When compared with

EROS and ERNST (Fenwick et al. 2011), the weighted

X-ray ensemble falls short especially in the NH and CAHA

datasets. However, as was pointed out in (Markwick et al.

2009), the conformations in EROS ensemble may have

incorrect geometry. Indeed both reprotonated EROS and

a e

b c d

Fig. 2 The final weighted X-ray ensemble that consists of six clusters

(see Table 9) and representative conformations for each cluster.

Center—All the structures overlaid onto one another, 1UBQ-A

(cluster 1)—green, 2G45-E (cluster 2)—red, 2DX5-B (cluster 3)—ice

blue, 1YD8-V (cluster 4)—purple, 3HIU-A (cluster 5)—orange and

1TBE-A (cluster 6)—blue. a–e compare 1UBQ-A with 2G45-E (red),

2DX5-B (ice blue), 3HIU-A (orange), 1TBE-A (blue), and 1YD8-V

(purple) respectively

Table 10 Q-factors of the different bond vectors of the weighted

X-ray ensemble as well as some other ensembles

NH CaC CaHa CN CHN Description

0.122 0.097 0.145 0.088 0.186 Weighted X-ray

0.184 0.108 0.161 0.099 0.228 Unweighted X-ray

0.071 0.118 0.069 0.138 0.188 EROS

0.213 0.118 0.128 0.138 0.234 EROS reprotonated

0.066 0.140 0.167 0.096 0.182 ERNST

0.180 0.141 0.177 0.095 0.207 ERNST reprotonated

0.244 0.180 0.236 0.171 0.266 1UBQ

0.114 0.105 0.084 0.120 0.163 1D3Z

0.231 0.175 0.196 0.233 0.281 MUMO

CaHa is used for cross-validation
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reprotonated ERNST display much higher Q-factor values,

see Table 10.

Uncertainty in weight assignments

Uncertainty in weight assignments can be computed when

there are multiple datasets (see ‘‘Materials and methods’’).

In the case of ubiquitin, there are 24 NH RDC data sets along

with two multi-vector RDC datasets. The whole datasets are

partitioned into two subsets such that each subset contains

one multi-vector dataset along with an equal proportion of

NH RDC datasets. Weights obtained from each subset are

compared and their SDs are used for representing the

uncertainties in weight assignments (see Table 9).

Effects of weighting on conformational features

of ensembles

In addition to improving the reproduction of experimental

data, weighting alters conformational properties of the

ensemble. One of the interesting features of ubiquitin

structure is the presence of a ‘‘switched’’ conformation,

which is hypothesized to have a biological function (Huang

et al. 2011). The dihedral angles / of residue 53 and w of

residue 52 play an important role in facilitating the switch.

While /53 and w52 of the ‘‘switched’’ conformation are in

the range of *100� and *130� respectively, the same two

dihedrals are in the range of *-90� and *-50� respec-

tively for the unswitched conformation such as in 1UBQ.

We look into the changes in the population distributions of

these dihedral angles before and after reweighting and the

results are presented in Fig. 4.

In the first row of Fig. 4 (panels a and b) are shown the

differences in the population distributions of dihedral

angles /53 and w52 between before and after reweighting

the 143-conformation X-ray ensemble. The reweighting

significantly alters the dihedral angle distributions of /53

and w52, shifting much of the populations from being

around the unswitched conformation to the switched con-

formation. The reweighting also reduces the overall ranges

of the dihedral angle distributions and makes the two

population peaks narrower and sharper. To further dem-

onstrate how strong an effect weighting can have on

dihedral angle distributions, all the switched conformations

except 2G45 (chain E, a ‘‘switched’’ conformation) are

removed from the 143 conformations. The population of

the switched conformation in this reduced ensemble before

weighting is now less than 1 %. The second row of panels

(c and d) of Fig. 4 show the difference in population dis-

tributions upon reweighting this ensemble. As is seen, after

reweighting the population of the ‘‘switched’’ conformation

increases dramatically from less than 1 % to as high as

20 %.

Application to a computationally-determined ensemble

In the recent years many ubiquitin ensembles have been

determined computationally. ERNST, standing for ensem-

ble refinement for native proteins using a single alignment

tensor, was refined using NOEs and RDCs (Fenwick et al.

2011). ERNST does a very good reproduction of the

experimental RDCs as seen from the low Q-factors in

Table 11. But as with EROS, there is a significant increase

in Q-factors once the ensemble is reprotonated using

standard tools. Though the validity of reprotonation is

debatable, such a significant increase in Q-factors could be

due to the covalently incorrect placement of hydrogen

atoms (Markwick et al. 2009). Therefore, we choose to

Fig. 3 Residue-wise Q-factors

of 1UBQ (the green line), the

unweighted (blue bars) and

weighted (red bars) X-ray

ensemble. The common region

between the unweighted and

weighted is colored maroon
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apply our weighting algorithm to the reprotonated ERNST

ensemble instead to avoid introducing into weights errors

due to incorrect covalent geometry. The Q-factors obtained

after weighting the reprotonated ERNST ensemble are

shown in Table 11. From the table it is seen that though

weighting lowers the Q-factors, the decreases are mostly

quite nominal and the new Q-factors are not as good as

those of the weighted X-ray ensemble.

A close look at dihedral angle distributions of /53 and

w52 of the ENRST ensemble as we did to the X-ray

ensemble in Fig. 4 reveals the reason. Figure 5 (panels a

and b) shows that ENRST does not sample the ‘‘switched’’

conformational state at all and all the conformations have

/53 and w52 angles similar to 1UBQ. To assess the

importance of ‘‘switched’’ conformational state, we add

2G45-E (a representative switched conformation) to

ERNST ensemble and then reweight it. Interestingly, the

Q-factors now improve significantly (see Table 11) and

reach to a level similar to the weighted X-ray ensemble.

Moreover, the switched conformation (2G45-E) is assigned

to a relative population of 0.30, which is highly similar to

the weight of the ‘‘switched’’ conformation in the weighted

X-ray ensemble (which is 0.29). This is remarkable since it

shows that common conformational features emerge after

reweighting even though the two ensembles to which the

reweighting scheme has been applied are rather different.

In Fig. 5, panels a and b show the population distributions

of the /53 and w52 before and after weighting of the rep-

rotonated ERNST ensemble, while panels c and d show the

distributions of the same dihedral angles of the same rep-

rotonated ERNST ensemble after a switched conformation

is added to it. By comparing between the dihedral angle

distributions in Figs. 4 and 5, it is seen that while ERNST

(reprotonated) itself does not have similar properties as the

weighted X-ray ensemble, the weighted ERNST ? 2G45-E

Fig. 4 Effects of weighting on

the conformational features of

X-ray ensembles. a,

b Population distributions of

/53 and w52 dihedral angles

before (blue bars) and after (red

bars) weighting of the X-ray

ensemble. c, d Same population

distributions but for a modified

X-ray ensemble whose

‘‘switched’’ conformations

except one are all taken out (see

the text). The common region

between the unweighted and

weighted is colored maroon

Table 11 Q-factors of the different bond vectors of the ERNST

ensembles

NH CaC CaHa CN CHN Description

0.066 0.140 0.167 0.096 0.182 ERNST

0.180 0.141 0.177 0.095 0.207 ERNST reprotonated

0.147 0.145 0.178 0.098 0.190 Weighted reprotonated

ERNST

0.123 0.112 0.132 0.093 0.172 Weighted (reprotonated

ERNST ? 2G45-E)

CaHa is used for cross-validation. ERNST reprotonated is the same as

ERNST except the hydrogen atoms are replaced using standard

geometry. In the last row, the reprotonated ERNST is first enhanced

with a switched conformation 2G45-E before the population re-

weighting is applied
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(see panels c and d of Fig. 5) shows highly similar confor-

mational properties to the weighted X-ray ensemble (see

panels a and b of Fig. 4), especially with respect to the

dihedral angle distributions of /53 and w52.

Discussion and conclusions

Proteins are dynamic molecules and even the native state of

a protein is not a single static structure but spread over a

broader region of the conformation space. As a result, for

many proteins, an ensemble of conformations provides a

better depiction of the native states.

In this work we present a method to improve ensembles

and their ability to depict the native states. The method works

by identifying conformation states within an ensemble and

assigning appropriate relative populations, or weights, to

them. Each of these conformation states is represented by a

sub-ensemble formed by a subset of the conformations.

Our results demonstrate that such weight assignment is

feasible and the weights are significant. Since the weights

are computed by least squares fitting to the experimental

RDC data, one may naturally question the significance of

the weights. Are the weights significant and physically

meaningful? Or are they merely a result of over-fitting to

the noise in the experimental data? To address this concern,

we design a sensitive measure to recognize the onset of

over-fitting and finish the weight assignment before over-

fitting starts to occur. Lastly, the significance of the weights

is further examined and verified by cross validation.

The method presented in this work uses experimental

RDC data as constraints to assign relative populations to

conformations within an ensemble. In order for this method

to succeed, what is the requirement on the ensemble and its

conformations? Our results indicate the following:

• Undersampling in conformation states, where some

conformation states are represented by few conforma-

tions, does not hinder weight determination. Experi-

mental structures of the same protein obtained under

different conditions or bound states have been sug-

gested to form a native state ensemble of the protein

(Best et al. 2006). Such a native state ensemble may

cover all the important conformation states of the

protein, but not necessarily proportionally, and some of

the states may be severely undersampled. As seen from

case I, undersampling does not hinder weight assign-

ment and our algorithm can be readily applied to

determine the relative populations.

Fig. 5 Dihedral distributions of

/53 and w52 in the ERNST

ensembles. a, b Population

distributions of /53 and w52

dihedral angles before (blue

bars) and after (red bars)

weighting of the ERNST

ensemble. c, d Populations of

the same dihedral angles before

(blue bars) and after (red bars)

weighting of an enhanced

ERNST ensemble (with 2G45-

E, a ‘‘switched’’ conformation,

added). The common region

between the unweighted and

weighted is colored maroon
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• Noise conformations in an ensemble that do not

represent any conformation states can be mostly filtered

out. In case II, we create a situation where the ensemble

contains a cluster of conformations that do not belong

to any conformation state. Case III represents another

situation where each conformation state is mixed with a

large amount of noise conformations. The presence of

noise conformations may make it difficult to identify

conformation states, or to separate conformations

representing a conformation state from those that do

not. However, test results show that our method is able

to effectively filter out most of the noise conformations.

• While cases I to III show that given an ensemble with

good coverage and completeness, the weighting algo-

rithm is able to identify the clusters and assign them with

proper weights and thus lower the Q-factors, case IV

indicates the converse is not necessarily true: low

Q-factors do not necessarily mean that an ensemble is

of good quality. Therefore, cautions must be taken in

future ensemble determination and assessment. Mea-

sures other than Q-factors are needed to check the quality

of computer-generated ensembles. It is not clear what

these measures are, but their discovery and identification

are going to be critical to the field’s progress.

We apply our method to a ubiquitin ensemble of 143

conformations and identify six conformation states. The

two most populated conformation states, one of which

represents the conformation state near the free state of

ubiquitin while the other the ‘‘switched’’ conformer, match

closely with conformation states identified by other studies.

The relative populations assigned to these two states by our

method, agree extremely well with the findings by Shaw’s

group through long MD simulations(Piana et al. 2013). The

validity of such conformation state identification and

weight assignments are further confirmed by significant

improvement in Q-factors and cross-validation.

We apply our method also on a computationally derived

ensemble, ERNST, which was refined against RDCs and

NOEs. Even though the reproduction of experimental data,

RDCs in this case, worsens after reprotonation, we are able

to significantly improve the Q-factors by augmenting the

ensemble with a switched conformation and reweighting.

In doing so we observe the emergence of common dihedral

angle distributions in both the augmented ERNST ensem-

ble and X-ray ensemble.

The method presented in this work can be applied to

other proteins to identify conformation states and assign

relative populations, provided that sufficient RDC data

exist. A good question to ask is how much RDC data is

required for weight assignment? And what type of RDC

data is required, NH RDCs, multi-vector RDCs, or both?

We plan to study this in future work.

The number of conformation states recognized by our

method can be used to guide the selection of ensemble size

in ensemble determination. Most ensemble determination

methods try out different sizes for replica ensembles,

usually from 1, 2, 4, 8, up to 16. The method presented here

provides an informed estimation of the right size for the

ensemble. Since the method requires an ensemble as a

starting point, it could be applied alternatively with an

existing ensemble determination method until the process

converges and a right ensemble size is identified. Our

results strongly suggest that relative weights, instead of the

default equal-weights, should be considered as parameters

in ensemble determination.
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Appendix 1: Calculation of RDC’s

Given a 3D structure of a protein, the RDC Dij can be

expressed using the molecular frame. First, the elements of

Saupe matrix is defined as:

Slm ¼
3 cos bl cos bm � klm

2

� �

ð4Þ

where bl denotes the orientation of the l-th molecular axis

with respect to the external magnetic field. The RDC Dij

can be reformulated in the molecular frame as:

Dij ¼
�lhrirj

ð2prÞ3
a2

y � a2
x ; a2

z � a2
x ; 2axay;2axaz;2ayaz

� �
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1
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ð5Þ

where ax, ay, and az are the cosines of the angles between

the bond vector of the two nuclei and the x, y, and z axes of

the molecular frame. Let axk, ayk, and azk represent the k-th

ax, ay, and az. When all the bond vectors are considered,

we have the following formula:

Dexp ¼
�lhrirj

ð2prÞ3

 ! a2
y;1 � a2

x;1 � � � 2ay;1az;1

..

. . .
. ..

.
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ð6Þ

where Dexp is the experimental RDCs and N is the total

number of data points. Eq. 6 can be rewritten in the

following matrix form:

J Biomol NMR (2014) 58:209–225 223

123



Dexp ¼ cAS ð7Þ

where c is the constant
�lhrirj

ð2prÞ3 and A is the N 9 5 matrix in

Eq. 6 and S is the 5 9 1 vector. Optimal S and thereby

Dcalc (i.e., the calculated RDCs) can be computed by

singular value decomposition using Moore–Penrose

pseudoinverse of matrix A:

S ¼ A�1Dexp ð8Þ

Dcalc ¼ AA�1Dexp ð9Þ

Residual dipolar coupling (RDC) calculation

from an ensemble

The RDC calculation method for a single structure can be

extended to take ensemble averaging into account so that

the ensemble Dcalc can be obtained. First let us consider the

assumption that all structures have equal contributions

toward the experimental RDC: Dexp. When an ensemble

with equal weights is considered, we have the following

formula:

A1

n
þ A2

n
þ � � � þ Ak

n
þ � � �An

n

� �

S ¼ Dexp ð10Þ

where Ak is the A matrix obtained from the k-th structure in

the ensemble. S can be obtained from the following

equation:

S ¼ A1

n
þ A2

n
þ � � � þ Ak

n
þ � � �An

n

� ��1

Dexp ð11Þ

Strictly speaking, the Saupe matrix might vary for different

conformations of the protein. In this work we assume the

same Saupe matrix for all the conformations. This

assumption is reasonable especially for proteins that make

only small conformation changes, as is the case with

ubiquitin.

Now let us consider the case that structures in an

ensemble have different populations and thus different

amounts of contributions toward the experimental obser-

vations Dexp. Therefore, weights (representing the relative

populations) are given to different structures and the fol-

lowing formula is used to represent the combination:

w1A1 þ w2A2 þ � � � þ wkAk þ � � �wnAnð ÞS ¼ Dexp ð12Þ

where n is the total number of structures and wk and Ak are

respectively the relative population (or weight) and A

matrix of the k-th structure. Thus, S can be obtained from

the following formula:

S ¼ w1A1 þ w2A2 þ � � � þ wkAk þ � � �wnAnð Þ�1
Dexp ð13Þ

Our problem is thus to find the optimal relative populations

for the structures in the ensemble so that the experimental

RDCs are best reproduced. The solution to this problem is

given in Appendix 2.

Appendix 2

The iterative least squares fitting algorithm to a single

RDC data set

The iterative least squares fitting algorithm to multiple

RDC data sets
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